Информация об изменениях

Сообщение Re: Изоморфны ли LLM и цепи Маркова? от 09.11.2024 8:12

Изменено 09.11.2024 8:14 σ

Re: Изоморфны ли LLM и цепи Маркова?
https://chatgpt.com/share/672f1945-5348-800a-8893-3fb0d7dc4a85:

Нет, большие языковые модели (Large Language Models, LLM) и цепи Маркова не являются изоморфными. Хотя оба подхода связаны с моделированием последовательностей и использованием вероятностных переходов, они существенно различаются по своей структуре и возможностям.

Цепи Маркова основаны на так называемом марковском свойстве: вероятность перехода в следующий состояние зависит только от текущего состояния, а не от всей предшествующей последовательности событий. Это означает, что модель учитывает только непосредственное прошлое при прогнозировании будущего.

Большие языковые модели, такие как GPT-4, используют архитектуры глубокого обучения (например, трансформеры) для обработки и генерации текста. Эти модели способны учитывать длинные контексты и сложные зависимости в данных, а не только предыдущий токен или слово. LLM анализирует большую часть или весь предшествующий текст для прогнозирования следующего элемента в последовательности.

Таким образом, из-за различий в структуре, принципах работы и способности учитывать контекст, LLM и цепи Маркова не являются изоморфными.

Re: Изоморфны ли LLM и цепи Маркова?
https://chatgpt.com/share/672f1945-5348-800a-8893-3fb0d7dc4a85

Нет, большие языковые модели (Large Language Models, LLM) и цепи Маркова не являются изоморфными. Хотя оба подхода связаны с моделированием последовательностей и использованием вероятностных переходов, они существенно различаются по своей структуре и возможностям.

Цепи Маркова основаны на так называемом марковском свойстве: вероятность перехода в следующий состояние зависит только от текущего состояния, а не от всей предшествующей последовательности событий. Это означает, что модель учитывает только непосредственное прошлое при прогнозировании будущего.

Большие языковые модели, такие как GPT-4, используют архитектуры глубокого обучения (например, трансформеры) для обработки и генерации текста. Эти модели способны учитывать длинные контексты и сложные зависимости в данных, а не только предыдущий токен или слово. LLM анализирует большую часть или весь предшествующий текст для прогнозирования следующего элемента в последовательности.

Таким образом, из-за различий в структуре, принципах работы и способности учитывать контекст, LLM и цепи Маркова не являются изоморфными.