Информация об изменениях

Сообщение Возобновляемая энергетика vs модульные АЭС от 16.12.2022 16:16

Изменено 16.12.2022 17:51 Serginio1

Зеленая энергетика vs модульные АЭС
В Китае на номинальную мощность вывели «двухтактный» ядерный реактор — два реактора работают на одну турбину

Китай стал первой страной в мире, где начал работать модульный реактор. Вчера каждый из двух реакторов «Шидаовань-1» (Shidaowan-1) вышел на номинальную тепловую мощность 250 МВт(т). Для этого им понадобился один год. Оба реактора крутят одну газовую турбину электрической мощностью 211 МВт(э). Успешное завершение проекта открывает дорогу к созданию установки с шестью реакторами для обслуживания одной 650-МВт(э) турбины.

АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC
АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC
Реактор «Шидаовань-1» интересен не только модульным подходом, хотя это путь к гибким проектам в широком диапазоне задач и стоимости. Ключевой интерес к проекту заключён в том, что это первый в мире новейший проект высокотемпературного газоохлаждаемого реактора с галечным слоем (HTR-PM). Топливом служат 60-мм шарики из графита, внутри которых находится обогащённый до 8,5 % уран-235. Шарики лежат в реакторах, как галька на пляже, а сквозь неё продувается нагретый до 250 °C гелий. В каждом реакторе около 245 тыс. таких шариков.

При проходе сквозь «галечный слой» гелий разогревается до 750 °C. На входе в турбину температура ниже — она опускается до 567 °C. Топливные шарики выдерживают температуры до 1620 °C без разрушения, что сохраняет их целостность даже в случае аварий. Технология считается высоконадёжной и перспективной. Настолько, что власти Великобритании сделали ставку на HTR-PM-реакторы как на самые перспективные для будущего развёртывания в стране.

Китайский реактор «Шидаовань-1» ещё не принят в коммерческую эксплуатацию. Но этот шаг не задержится. Площадка «Шидаовань», как ожидается, вместит ещё 18 реакторных блоков. В этом вся ценность модульного подхода — реакторы строятся относительно быстро, сравнительно недорого и по мере появления в них потребности.


Малые атомные реакторы могут стать источником водорода — для них это будет побочный продукт

Реакторы, даже малые, это инерционные машины. В случае появления излишков мощности её было бы желательно направить на выполнение полезной работы. В частности, на электролизные ячейки для получения водорода. Затем водород можно либо просто сжечь для получения тепла или электричества или использовать как топливо для транспорта и механизмов.

Наделить малые модульные реакторы решениями для баланса мощности в виде побочного производства водорода стало бы высшим пилотажем в сфере атомной энергетики. Малые реакторы ценны сами по себе, поскольку обещают такую выгоду, как быстрое тиражирование АЭС от проекта до ввода в строй без обычного перерасхода средств и затягивания строительства, чем болеют полномасштабные АЭС. И если к этому добавится возможность вырабатывать, хранить и обеспечивать транспортировку водорода, то это будет максимум, который можно будет выжать для будущей экологичной экономики.



Вот все эти громоздкие солнечные батареи, ветряки в которые вливаются огромные деньги, значительно уступают модульным АЭС.
При этом не загорами и термояд.

США объявили о прорыве в термоядерной энергетике — реакция синтеза дала в 1,5 раза больше энергии, чем ушло на её запуск

В рамках эксперимента самая мощная в мире лазерная установка, включающая 192 лазера, доставила до крошечной капсулы с топливом 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж энергии. То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено.

Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд. Американские учёные ещё в 60-е годы прошлого века предположили, что для запуска реакции синтеза можно использовать лазеры, с помощью которых получится создать огромное давление и температуру, необходимые для запуска реакции. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях.

Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением.

Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза
В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов.

Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований. Тем не менее, значимость первого удачного эксперимента по термоядерному воспламенению огромна — возможно, в итоге он станет отправной точкой в революции в мировой энергетике. Термоядерная энергия может стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и избавить людей от вредных выбросов в атмосферу.

Возобновляемая энергетика vs модульные АЭС
В Китае на номинальную мощность вывели «двухтактный» ядерный реактор — два реактора работают на одну турбину

Китай стал первой страной в мире, где начал работать модульный реактор. Вчера каждый из двух реакторов «Шидаовань-1» (Shidaowan-1) вышел на номинальную тепловую мощность 250 МВт(т). Для этого им понадобился один год. Оба реактора крутят одну газовую турбину электрической мощностью 211 МВт(э). Успешное завершение проекта открывает дорогу к созданию установки с шестью реакторами для обслуживания одной 650-МВт(э) турбины.

АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC
АЭС «Шидаовань» с парой реакторов HTR-PM. Источник изображения: CNNC
Реактор «Шидаовань-1» интересен не только модульным подходом, хотя это путь к гибким проектам в широком диапазоне задач и стоимости. Ключевой интерес к проекту заключён в том, что это первый в мире новейший проект высокотемпературного газоохлаждаемого реактора с галечным слоем (HTR-PM). Топливом служат 60-мм шарики из графита, внутри которых находится обогащённый до 8,5 % уран-235. Шарики лежат в реакторах, как галька на пляже, а сквозь неё продувается нагретый до 250 °C гелий. В каждом реакторе около 245 тыс. таких шариков.

При проходе сквозь «галечный слой» гелий разогревается до 750 °C. На входе в турбину температура ниже — она опускается до 567 °C. Топливные шарики выдерживают температуры до 1620 °C без разрушения, что сохраняет их целостность даже в случае аварий. Технология считается высоконадёжной и перспективной. Настолько, что власти Великобритании сделали ставку на HTR-PM-реакторы как на самые перспективные для будущего развёртывания в стране.

Китайский реактор «Шидаовань-1» ещё не принят в коммерческую эксплуатацию. Но этот шаг не задержится. Площадка «Шидаовань», как ожидается, вместит ещё 18 реакторных блоков. В этом вся ценность модульного подхода — реакторы строятся относительно быстро, сравнительно недорого и по мере появления в них потребности.


Малые атомные реакторы могут стать источником водорода — для них это будет побочный продукт

Реакторы, даже малые, это инерционные машины. В случае появления излишков мощности её было бы желательно направить на выполнение полезной работы. В частности, на электролизные ячейки для получения водорода. Затем водород можно либо просто сжечь для получения тепла или электричества или использовать как топливо для транспорта и механизмов.

Наделить малые модульные реакторы решениями для баланса мощности в виде побочного производства водорода стало бы высшим пилотажем в сфере атомной энергетики. Малые реакторы ценны сами по себе, поскольку обещают такую выгоду, как быстрое тиражирование АЭС от проекта до ввода в строй без обычного перерасхода средств и затягивания строительства, чем болеют полномасштабные АЭС. И если к этому добавится возможность вырабатывать, хранить и обеспечивать транспортировку водорода, то это будет максимум, который можно будет выжать для будущей экологичной экономики.



Вот все эти громоздкие солнечные батареи, ветряки в которые вливаются огромные деньги, значительно уступают модульным АЭС.
При этом не загорами и термояд.

США объявили о прорыве в термоядерной энергетике — реакция синтеза дала в 1,5 раза больше энергии, чем ушло на её запуск

В рамках эксперимента самая мощная в мире лазерная установка, включающая 192 лазера, доставила до крошечной капсулы с топливом 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж энергии. То есть на выходе оказалось более чем в полтора раза больше энергии, чем было затрачено.

Термоядерный синтез — это реакция, при которой два лёгких атомных ядра объединяются в одно более тяжелое, при этом генерируя большой объём энергии. То же самое происходит внутри звёзд. Американские учёные ещё в 60-е годы прошлого века предположили, что для запуска реакции синтеза можно использовать лазеры, с помощью которых получится создать огромное давление и температуру, необходимые для запуска реакции. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях.

Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением.

Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза
В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов.

Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований. Тем не менее, значимость первого удачного эксперимента по термоядерному воспламенению огромна — возможно, в итоге он станет отправной точкой в революции в мировой энергетике. Термоядерная энергия может стать альтернативой как обычным атомным электростанциям, работающим наоборот за счёт расщепления атомов, так и углеводородному топливу и избавить людей от вредных выбросов в атмосферу.