Информация об изменениях

Сообщение Re[4]: Возможно ли другое значение числа ПИ от 11.01.2020 11:33

Изменено 11.01.2020 11:34 Qulac

Re[4]: Возможно ли другое значение числа ПИ
Здравствуйте, Sharov, Вы писали:

S>Здравствуйте, Qulac, Вы писали:



Q>>Не катит. Можно заметить, что с каждым разом количество вершин углов не лежащих на окружности увеличивается, т.е. ломанный квадрат ни когда полностью не совпадет с окружностью при любом количестве шагов.


S>Да, но подобным образом квадрат сколь угодно точно будет аппроксимировать окружность, т.е. будет подле 4 все время.


Тут наверно проще сравнить этот метод с другим. Вот если мы вокруг окружности построим правильный выпуклый многоугольник и на каждом шаге будем увеличивать количество его углов, то у нас будет получатся следующее: на каждом шаге мы берем точку из бесконечного множества точек и кладем ее на окружность, т.е. при бесконечном количество углов у нас многоугольник "сольется" с окружностью, так как множество не использованных точек многоугольника закончится, т.е. все его точки лягут на окружность. В случае же с загибанием углов квадрата у нас всегда остаются точки которые не будут лежать на окружности, так как это связано с самим процессом загибания углов, т.е. загибая угол мы одну точку кладем на окружность, а две остаются.
Re[4]: Возможно ли другое значение числа ПИ
Здравствуйте, Sharov, Вы писали:

S>Здравствуйте, Qulac, Вы писали:



Q>>Не катит. Можно заметить, что с каждым разом количество вершин углов не лежащих на окружности увеличивается, т.е. ломанный квадрат ни когда полностью не совпадет с окружностью при любом количестве шагов.


S>Да, но подобным образом квадрат сколь угодно точно будет аппроксимировать окружность, т.е. будет подле 4 все время.


Тут наверно проще сравнить этот метод с другим. Вот если мы вокруг окружности построим правильный выпуклый многоугольник и на каждом шаге будем увеличивать количество его углов, то у нас будет получатся следующее: на каждом шаге мы берем точку из бесконечного множества точек и кладем ее на окружность, т.е. при бесконечном количество углов у нас многоугольник "сольется" с окружностью, так как множество не использованных точек многоугольника закончится, т.е. все его точки лягут на окружность. В случае же с загибанием углов квадрата у нас всегда остаются точки которые не будут лежать на окружности, так как это связано с самим процессом загибания углов, т.е. загибая угол мы одну точку кладем на окружность, а две остаются(если считать точки только на вершинах углов).