Сообщение Re[13]: Бурбаки и множества от 02.06.2019 18:39
Изменено 02.06.2019 18:52 _vanger_
Re[13]: Бурбаки и множества
Здравствуйте, Sharov, Вы писали:
S>Почему не то так важно, чтобы все было множеством? Единая аксиоматика?
Почему важно, в смысле? В общем, да, общий базис -- это очень удобно. На практике теоретико-множественный взгляд приносит пользу тем, что это единый язык. Буквально, без него говорить о математике было бы гораздо тяжелей.
В последние десятиления в связи с развитием алгебраической топологии и проникновении её идей в другие разделы всё более популярным становится, язык теории категорий. Это, в некотором смысле, дуальный теории множеств взгляд: мы стартуем не с структур самих по себе, заданных элементами, так, что отображения между ними, уважающие эти структуры, -- производное понятие, а говорим о коллективном поведении объектов, в их внутренний мир не лазя.
pic related
S>Почему не то так важно, чтобы все было множеством? Единая аксиоматика?
Почему важно, в смысле? В общем, да, общий базис -- это очень удобно. На практике теоретико-множественный взгляд приносит пользу тем, что это единый язык. Буквально, без него говорить о математике было бы гораздо тяжелей.
В последние десятиления в связи с развитием алгебраической топологии и проникновении её идей в другие разделы всё более популярным становится, язык теории категорий. Это, в некотором смысле, дуальный теории множеств взгляд: мы стартуем не с структур самих по себе, заданных элементами, так, что отображения между ними, уважающие эти структуры, -- производное понятие, а говорим о коллективном поведении объектов, в их внутренний мир не лазя.
pic related
Re[13]: Бурбаки и множества
Здравствуйте, Sharov, Вы писали:
S>Почему не то так важно, чтобы все было множеством? Единая аксиоматика?
Почему важно, в смысле? В общем, да, общий базис -- это очень удобно. На практике теоретико-множественный взгляд приносит пользу тем, что это единый язык. Буквально, без него говорить о математике было бы гораздо тяжелей.
В последние десятиления в связи с развитием алгебраической топологии и проникновении её идей в другие разделы всё более популярным становится, язык теории категорий. Это, в некотором смысле, дуальный теории множеств взгляд: мы стартуем не с структур самих по себе, заданных элементами, так, что отображения между ними, уважающие эти структуры, -- производное понятие, а говорим о коллективном поведении объектов, в их внутренний мир не лазя.
pic related
Кстати, некоторый оффтопик, но занятное наблюдение. В некотором смысле, в математике бывают равенства разного уровня абстракций. Условно, нулевой -- равенство элементов объектов, самый частый случай. Пример -- формула Ньютона-Лейбница, утверждающая, что две чиселки: предел интегральных сумм и разность значений первообразных, равны. Первый -- равенство объектов. Пример -- изоморфность тех же линейных пространств одинаковой размерности. Но можно пойти и дальше, и говорить об одинаковости коллективного поведения объектов -- эквивалентности категорий. Пример -- теорема Серра-Суона.
S>Почему не то так важно, чтобы все было множеством? Единая аксиоматика?
Почему важно, в смысле? В общем, да, общий базис -- это очень удобно. На практике теоретико-множественный взгляд приносит пользу тем, что это единый язык. Буквально, без него говорить о математике было бы гораздо тяжелей.
В последние десятиления в связи с развитием алгебраической топологии и проникновении её идей в другие разделы всё более популярным становится, язык теории категорий. Это, в некотором смысле, дуальный теории множеств взгляд: мы стартуем не с структур самих по себе, заданных элементами, так, что отображения между ними, уважающие эти структуры, -- производное понятие, а говорим о коллективном поведении объектов, в их внутренний мир не лазя.
pic related
Кстати, некоторый оффтопик, но занятное наблюдение. В некотором смысле, в математике бывают равенства разного уровня абстракций. Условно, нулевой -- равенство элементов объектов, самый частый случай. Пример -- формула Ньютона-Лейбница, утверждающая, что две чиселки: предел интегральных сумм и разность значений первообразных, равны. Первый -- равенство объектов. Пример -- изоморфность тех же линейных пространств одинаковой размерности. Но можно пойти и дальше, и говорить об одинаковости коллективного поведения объектов -- эквивалентности категорий. Пример -- теорема Серра-Суона.