Re[3]: Не только прямоугольник!
От: MichaelP  
Дата: 15.02.03 15:22
Оценка: 17 (2)
MP>Поведем вертикальную прямую. В дальнейшем мы будем перемещать стул так, чтобы центр пересечения диагоналей прямоугольника образованного концами ножек лежал на этой прямой. Проводим вертикальную плоскость через ножки 1,3. Опускаем стул так, чтбы установились 1,3 и при этом остались в этой вертикальной плоскости. Обозначим высоту точки персечения диагоналей в этой позиции через h. Теперь "качаем" стул вокруг оси 1,3 до того момента, когда растояние от поверхности (по вертикали) у ножек 2,4 не сравняется. Назовем это растояние x, причем, если ножки выше поверхности x считаем положительным, если ниже отрицательным.

MP>В зависимости от начального угла поворота у нас получаются две периодические непрерывные функции h(fi) и x(fi). Расмотрим две точки, в которых h достигает максимума и минимума.

MP>В первой из этих точек x должно быть неотрицательным, т.к. иначе существовало бы fi (соответствуещее углу ножек 2,4) при котором стул можно было бы приподнять. Аналогично в минимуме h, x не может быть положительным. Следовательно в силу непрерывности x, существует точка, где x равно 0.

Только сегодня сообразил, что мое доказательство верно для любого четырехугольника, у которого одну диагональ можно перевести в другую поворотом вокруг точки пересечения диагоналей. Т.е., говоря человеческим языком, для любой равнобедренной трапеции.