Случайные числа
От: nikov США http://www.linkedin.com/in/nikov
Дата: 27.02.07 15:18
Оценка:
Как вы думаете: попытки генерировать истинно случайные числа вместо просто хороших псевдослучайных — это действительно жизненная необходимость или перестраховка?

И разрешима ли строго задача генерации истинно случайных чисел?
Re: Случайные числа
От: deniok Россия  
Дата: 27.02.07 15:27
Оценка:
Здравствуйте, nikov, Вы писали:

N>И разрешима ли строго задача генерации истинно случайных чисел?


Где-то мне попадалась ссылка на сайт, где торговали случайными последовательностями. Правда брали они их, записывая то ли космическое излучение, то ли белый шум из какого-то другого физического источника.
Re: Случайные числа
От: sc Россия  
Дата: 27.02.07 15:28
Оценка:
Здравствуйте, nikov, Вы писали:

N>Как вы думаете: попытки генерировать истинно случайные числа вместо просто хороших псевдослучайных — это действительно жизненная необходимость или перестраховка?


N>И разрешима ли строго задача генерации истинно случайных чисел?


1. Необходимость (нафига бы столько народу этим заморачивались)
2. Разрешима (с привлечением аппаратных средств)
Re[2]: Случайные числа
От: Ужасть бухгалтера  
Дата: 27.02.07 15:59
Оценка: :))
D>Где-то мне попадалась ссылка на сайт, где торговали случайными последовательностями. Правда брали они их, записывая то ли космическое излучение.
Да-да, помню, помню. Про этих товарищей еще Лем писал что-то в "Гласе господа"
Re: Случайные числа
От: Хитрик Денис Россия RSDN
Дата: 27.02.07 16:24
Оценка:
http://www.rsdn.ru/Forum/Default.aspx?group=prj.entropy
Правила нашего с вами форума.
Как правильно задавать вопросы. © 2001 by Eric S. Raymond; перевод: © 2002 Валерий Кравчук.
Re: Случайные числа
От: VladD2 Российская Империя www.nemerle.org
Дата: 27.02.07 23:52
Оценка:
Здравствуйте, nikov, Вы писали:

N>И разрешима ли строго задача генерации истинно случайных чисел?


Нет, так как все в воде Божей! Аминь.
... << RSDN@Home 1.2.0 alpha rev. 637>>
Есть логика намерений и логика обстоятельств, последняя всегда сильнее.
Re: Случайные числа
От: gbear Россия  
Дата: 28.02.07 05:42
Оценка:
Здравствуйте, nikov, Вы писали:

Д. Кнут "Искусство программирования" Том 2.

---
С уважением, Сиваков Константин.
Re: Случайные числа
От: Кодёнок  
Дата: 28.02.07 07:17
Оценка:
Здравствуйте, nikov, Вы писали:

N>И разрешима ли строго задача генерации истинно случайных чисел?


Что такое истинно случайное число?
Re: Случайные числа
От: laad  
Дата: 28.02.07 08:56
Оценка:
Здравствуйте, nikov, Вы писали:

N>Как вы думаете: попытки генерировать истинно случайные числа вместо просто хороших псевдослучайных — это действительно жизненная необходимость или перестраховка?


Что точно можно сказать, нужны хорошие источники энтропии. Можно ли их называть в какой-то мере генераторами истинно случайных чисел, сказать не берусь.

N>И разрешима ли строго задача генерации истинно случайных чисел?


чисто физически — разрешима (по крайней мере, в текущей картине мира), но, вероятно, с некой конечной точностью.
Re: Случайные числа
От: Eugene Kilachkoff Россия  
Дата: 28.02.07 10:35
Оценка: +1 :)
Здравствуйте, nikov, Вы писали:

N>Как вы думаете: попытки генерировать истинно случайные числа вместо просто хороших псевдослучайных — это действительно жизненная необходимость или перестраховка?


Чисто из экономических соображений: какой суммой ты готов ответить за то, что написанный тобой генератор ПСЧ не ослабляет криптографию в системе ? А если систему все же поломают, как будешь доказывать что это не из за твоего генератора ?
Re[2]: Случайные числа
От: nikov США http://www.linkedin.com/in/nikov
Дата: 28.02.07 12:19
Оценка:
Здравствуйте, Eugene Kilachkoff, Вы писали:

EK>Чисто из экономических соображений: какой суммой ты готов ответить за то, что написанный тобой генератор ПСЧ не ослабляет криптографию в системе ? А если систему все же поломают, как будешь доказывать что это не из за твоего генератора ?


То есть, чистой воды перестраховка.
Re[3]: Случайные числа
От: Eugene Kilachkoff Россия  
Дата: 28.02.07 13:03
Оценка:
Здравствуйте, nikov, Вы писали:

N>Здравствуйте, Eugene Kilachkoff, Вы писали:


EK>>Чисто из экономических соображений: какой суммой ты готов ответить за то, что написанный тобой генератор ПСЧ не ослабляет криптографию в системе ? А если систему все же поломают, как будешь доказывать что это не из за твоего генератора ?


N>То есть, чистой воды перестраховка.

Нет, экономика. Аппаратный генератор стоит X баксов, плюс Y баксов его разработка. По идее, софтовый генератор не стоит ничего, но это только на первый взгляд. Софтовый генератор надо тоже написать и оттестировать, причем качества работы аппаратного генератора он не достигнет по определению. Софтовый генератор, кроме того, нужно кормить энтропией, в то время как аппаратный берет ее "из воздуха". Собственно, в этом случае софтовый генератор может выиграть только в одном случае -- если он будет капитально дешевле аппаратного, да и то для нетребовательных применений. Аппаратный же обычно весьма прост: это нечто шумящее (туннельный диод, например), усилитель, АЦП и все.
Re[4]: Случайные числа
От: nikov США http://www.linkedin.com/in/nikov
Дата: 28.02.07 13:10
Оценка:
Здравствуйте, Eugene Kilachkoff, Вы писали:

EK>Нет, экономика. Аппаратный генератор стоит X баксов, плюс Y баксов его разработка. По идее, софтовый генератор не стоит ничего, но это только на первый взгляд. Софтовый генератор надо тоже написать и оттестировать, причем качества работы аппаратного генератора он не достигнет по определению. Софтовый генератор, кроме того, нужно кормить энтропией, в то время как аппаратный берет ее "из воздуха". Собственно, в этом случае софтовый генератор может выиграть только в одном случае -- если он будет капитально дешевле аппаратного, да и то для нетребовательных применений. Аппаратный же обычно весьма прост: это нечто шумящее (туннельный диод, например), усилитель, АЦП и все.


Я бы взглянул на вопрос по-иному. Когда я пишу программный генератор, то я знаю алторитм и могу оценить сложность его угадывания.
Если я использую аппаратный генератор, то алгоритма его работы я не знаю, я лишь знаю, что он сложен. Но насколько сложен —
Может быть, завтра кто-то угадает алгоритм.
То есть я меняю риск, который я могу оценить, на риск, который я оценить не могу.
Re: Случайные числа
От: dotcode  
Дата: 28.02.07 13:19
Оценка:
Здравствуйте, nikov, Вы писали:

N>Как вы думаете: попытки генерировать истинно случайные числа вместо просто хороших псевдослучайных — это действительно жизненная необходимость или перестраховка?


N>И разрешима ли строго задача генерации истинно случайных чисел?


Знаки числа pi=3.1415926...; вполне случайные... но чем более случайными требуются числа, тем сложнее их получить.
А вообще-то в мире небыло бы войн, если бы можно было всё предсказать...
Re[5]: Случайные числа
От: igna Россия  
Дата: 28.02.07 13:23
Оценка: +1
Здравствуйте, nikov, Вы писали:

N>Если я использую аппаратный генератор, то алгоритма его работы я не знаю, я лишь знаю, что он сложен.


Алгоритма в обычном понимании слова там ведь нет.

N>Может быть, завтра кто-то угадает алгоритм.


То есть научится предсказывать какой-либо физический шум, доказав тем самым его неслучайность? Это будет открытие, шуму ( ) будет много, узнаешь и поменяешь генератор.
Re[6]: Случайные числа
От: nikov США http://www.linkedin.com/in/nikov
Дата: 28.02.07 13:27
Оценка:
Здравствуйте, igna, Вы писали:

N>>Может быть, завтра кто-то угадает алгоритм.


I>То есть научится предсказывать какой-либо физический шум, доказав тем самым его неслучайность? Это будет открытие, шуму ( ) будет много, узнаешь и поменяешь генератор.


А ОНИ узнали чуть раньше... И бабло уже ушло!
Проблема в том, что я не могу оценить риск такого события. Так стоит ли менять известный риск на неизвестный?
Re[2]: Случайные числа
От: igna Россия  
Дата: 28.02.07 13:34
Оценка:
Здравствуйте, dotcode, Вы писали:

D>Знаки числа pi=3.1415926...; вполне случайные... но чем более случайными требуются числа, тем сложнее их получить.


Случайные они или нет, это похоже открытый вопрос:

The most pressing open question about π is whether it is a normal number -- whether any digit block occurs in the expansion of π just as often as one would statistically expect if the digits had been produced completely "randomly", and that this is true in every base, not just base 10. Current knowledge on this point is very weak; e.g., it is not even known which of the digits 0,…,9 occur infinitely often in the decimal expansion of π.

http://en.wikipedia.org/wiki/Pi


Правда возможно они "вполне случайные", я просто не знаю, что это такое.
Re[5]: Случайные числа
От: Cyberax Марс  
Дата: 28.02.07 13:42
Оценка:
nikov wrote:
> Может быть, завтра кто-то угадает алгоритм.
> То есть я меняю риск, который я могу оценить, на риск, который я оценить
> не могу.
Вообще-то, есть методики оценки "случайности" чисел.

А все нормальные аппаратные генераторы работают с естественными
процессами, так что за них можно не волноваться.
Posted via RSDN NNTP Server 2.0
Sapienti sat!
Re[5]: Случайные числа
От: Кодёнок  
Дата: 28.02.07 13:43
Оценка: :)
Здравствуйте, nikov, Вы писали:

N>Если я использую аппаратный генератор, то алгоритма его работы я не знаю, я лишь знаю, что он сложен. Но насколько сложен —

N>Может быть, завтра кто-то угадает алгоритм.

Может быть завтра кто-то отменит принцип Гейзенберга?
Re[6]: Случайные числа
От: nikov США http://www.linkedin.com/in/nikov
Дата: 28.02.07 14:03
Оценка:
Здравствуйте, Кодёнок, Вы писали:

N>>Может быть, завтра кто-то угадает алгоритм.

Кё>Может быть завтра кто-то отменит принцип Гейзенберга?

Нет, речь не об этом. Просто любая физическая теория имеет ограниченную область применимости.
И лишь приблизительно отображает реальность.
Когда-то считали правильной классическую физику. И они были правы — она действительно точно описывала изученные на тот день явления.

Да, в текущей картине мира, единственное, что мы можем сказать — "это случайный процесс".
Но наука-то совершенствуется. А защищая свою систему, я хочу чтобы мое бабло было в сохранности не только сегодня, но и завтра, и послезавтра.
Выбирая аппаратные генераторы, мы априори принимаем гипотезу, что вероятность взлома "аппаратного" случайного процесса ниже взлома любого сколь угодно сложного программного.
Подождите ...
Wait...
Пока на собственное сообщение не было ответов, его можно удалить.