Здравствуйте, _vanger_, Вы писали:
V>>Конкретно в этой ветке обсуждения топике имело смысл говорить о таких, к которым применимы "параллельность" и "ортогональность".
__>Т.е. аффинные и евклидовы. А никакие не "нелинейные" и просто "пространства".
Дык, о чём и речь.
Вместо придуманного способа задания базиса через ф-ии на поверхности шара (а можно аналитический вид пары таких ф-ий, плиз?), достаточно было просто сказать, вот есть линейно-независимый базис, но на нём нет скалярного произведения.
В принципе, рядом QBit86 этот момент с тобой уже обсудил, т.е. вопрос исчерпан.
Введение параллельности и ортогональности независимое, посему мне этот спор и кажется глупым изначально.
V>>следует, что среди бесконечного мн-ва неких линейных пространств, отличающихся только размерностью, существует всего одно пространство с бесконечной размерностью.
__>Это опять чушь. Но на этот раз, хотя бы, утверждение, которое можно распарсить и понять, что оно неверно. К примеру, размерность двойственного пространства к бесконечномерному строго больше.
Условия
неких линейных пространств, отличающихся только размерностью
недостаточно разве?
V>>Покажи мне в своём "каноническом базисе" то и другое.
V>>Или только параллельность, коль на твой взгляд это более фундаментальное.
__>А про связь линейного пространства с аффинным было в другой ветке.
Таки, речь о конкретно твоём примере.
Т.е. как туда ввести параллельность? (это просто вопрос)
И, если можно ввести параллельность, почему нельзя ввести ортогональность?
__>По себе людей не судят. Топологические пространства и многообразия -- это базовый объект, на котором разворачивается движ в подавляющем количестве математики и физики. Соответственно, и кольца функций на них -- это то, что мозолит глаза большинству математиков и физиков. Но так как ты с этим не знаком, и ковыряешь свой узкий пятачок, то этого не понимаешь. Парадокс Блаба, фигли.
Тоже о чём и речь. ))
а не показывать, что конкретно ты "еще что-то знаешь" (С).
Ну как не зарисоваться...