HRM - думающая нейросеть
От: Nuzhny Россия https://github.com/Nuzhny007
Дата: 21.08.25 18:49
Оценка: 13 (3) :)
Hierarchical Reasoning Model
По сравнению с мейнстримовыми LLM, которые ни шахматы, ни судоку решить не могут, получился прямо таки прорыв.

Самая громкая статья месяца – Hierarchical Reasoning Model

Без предисловий, сразу главный результат: у авторов получилось сделать модельку всего на 27 миллионов (!) параметров, которая обошла o3-mini на ARC-AGI-1. Неудивительно, что об этой работе сейчас говорит все комьюнити, а авторы ARC-AGI даже сами написали большой разбор результатов модели на их бенчмарке.

Погнали разбираться.

Итак, вся архитектура состоит из двух рекуррентных модулей: быстрого низкоуровневого и медленного высокоуровневого. Первый отвечает за быстрые локальные вычисления и решения частных задач, а цель второго – абстрактно управлять процессом и ставить таски первому.

Суть в том, что они обновляются с разной частотой. Исходная задача разбивается на несколько циклов рассуждения. В каждом из них верхний модуль обновляется только один раз и дает новый контекст нижнему модулю, который в свою очередь делает много мелких шагов и ищет локальное решение.

Сколько будет таких итераций, модель решает сама. Останавливаться (или не останавливаться) в правильный момент ее специально учили с помощью RL. Так что «думать» она может и пару секунд, и пару часов.

Обучается HRM не совсем привычно для рекуррентной модели: здесь, вместо того чтобы сохранять все внутренние состояния, авторы решили обновлять градиенты только по финальному стейту. Удивительно, но факт – это работает.

Кстати, вся конструкция и принцип обучения очень похожи на то, как работает наш мозг. Некоторые области отвечают за абстракцию, другие – за конкретные моментальные действия, а общаются они посредством обратных связей. Здесь те же принципы иерархии (отсюда и название). Плюс, мозг тоже не хранит промежуточные траектории и к сходимости приходит через схожие волновые циклы.

Итог: модель для своего размера просто беспрецедентно хороша на решениях всяких головоломок типа судоку, лабиринтов и индуктивных задач. В общем, именно в тех областях, где привычные LLM обычно фейлятся. Конечно, особенно поражают результаты на ARC-AGI, которые мы описали в начале.

Революция или нет, но выглядит действительно очень изящно и эффектно.

Обязательно почитайте работу полностью тут (+ вот еще один отличный разбор на русском языке)


Ссылка на Телегу
 
Подождите ...
Wait...
Пока на собственное сообщение не было ответов, его можно удалить.