Use of MS Office in MFC MDI application

By Igor Tkachev
What for?

Once I was engaged in the project, which main feature was presence of great amount of the typical forms of input and output, something that concerns office-work. The documents were to be filled with database or other data, which the program could present. It would be extremely desirable, that the template of the document could understand these data independently.

It has appeared that MS Office satisfies all these requirements.

I shall try to demonstrate it in this article.

At once I shall notice, that the most crucial problem was unstable work at MS Office itself in an ActiveX Document mode. Therefore, you will notice some obviously not optimum decisions, but just from the first sight. For example, we had to refuse a direct VBA macro call since after the end of the program MS Office remained in memory, and it could only be removed by Task Manager, and the like.

If you solve this problem, please, inform me about it.

Let’s begin.

1. Generate new MDI application with the help of MFC AppWizard. Name the project XOffice and on the third step it’s necessary to establish Container и Active document container check-boxes.

2. The application should be the Automation server. I have taken advantage of a way offered by Nick Hodapp in his example AutoATL, which can be found in www.codeguru.com. Familiarize with this example and execute all steps of program transformation to the automation server.

3. Now we shall engage in connection MS Office. Include a file Office.h with the contents into the project:

// Office.h

#define Uses_MSO2000

#ifdef Uses_MSO2000

// for MS Office 2000

#import "C:\Program Files\Microsoft Office\Office\MSO9.DLL"
#import "C:\Program Files\Common Files\Microsoft Shared\VBA\VBA6\VBE6EXT.OLB"
#import "C:\Program Files\Microsoft Office\Office\MSWORD9.OLB" \

rename("ExitWindows","_ExitWindows")

#import "C:\Program Files\Microsoft Office\Office\EXCEL9.OLB" \

rename("DialogBox","_DialogBox") \

rename("RGB","_RGB") \

exclude("IFont","IPicture")

#import "C:\Program Files\Common Files\Microsoft Shared\DAO\DAO360.DLL" \

rename("EOF","EndOfFile") rename("BOF","BegOfFile")

#import "C:\Program Files\Microsoft Office\Office\MSACC9.OLB"
#else

// for MS Office 97

#import "C:\Program Files\Microsoft Office\Office\MSO97.DLL"
#import "C:\Program Files\Common Files\Microsoft Shared\VBA\VBEEXT1.OLB"
#import "C:\Program Files\Microsoft Office\Office\MSWORD8.OLB" \

rename("ExitWindows","_ExitWindows")

#import "C:\Program Files\Microsoft Office\Office\EXCEL8.OLB" \

rename("DialogBox","_DialogBox") \

rename("RGB","_RGB") \

exclude("IFont","IPicture")

#import "C:\Program Files\Common Files\Microsoft Shared\DAO\DAO350.DLL" \

rename("EOF","EndOfFile") rename("BOF","BegOfFile")

#import "C:\Program Files\Microsoft Office\Office\MSACC8.OLB"
#endif
4. We shall create a new form, which we shall require further.

Menu – Insert – New Form…

Enter CFormDemo into a field Name. Press the button New located near a Document field and then the button OK, in the newly appeared form. And once again OK.

We shall place three Edit Boxes and two Buttons in the new form. In ClassWizard we shall bind Edit Boxes to variables (accordingly CString m_str, double m_double, long m_long).

5. We shall create handler of the following kind for Buttons:

// FormDemo.cpp

void NewXOfficeDoc(LPCTSTR,LPCTSTR,double,long);

void CFormDemo::OnButton1()

{

UpdateData();

NewXOfficeDoc("XOffice.doc",m_str,m_double,m_long);

}

void CFormDemo::OnButton2()

{

UpdateData();

NewXOfficeDoc("XOffice.xls",m_str,m_double,m_long);

}

We shall add the following code to the beginning of XOfficeDoc.cpp file:

// XOfficeDoc.cpp

static CString g_template;

static CString g_str;

static double g_double;

static long g_long;

void NewXOfficeDoc(LPCTSTR aTemplate,LPCTSTR aStr,

 double aDouble,long aLong)

{

CString str;

POSITION pos = AfxGetApp()->GetFirstDocTemplatePosition();

while (pos != NULL) {

CDocTemplate *temp = AfxGetApp()->GetNextDocTemplate(pos);

if (temp->GetDocString(str,CDocTemplate::docName) &&

str == _T("XOffice")) {

g_template = aTemplate;

g_str = aStr;

g_double = aDouble;

g_long = aLong;

temp->OpenDocumentFile(NULL);

return;

}

}

}

Now we are able to create MDI documents by pressing the buttons on the form.

6. The MFC class ColeDocObjectItem provides the support of ActiveX document. The class can do a lot already, but we also need to teach it to load the documents, which we set up.

Bring the following change into a class CXOfficeCntrItem:

// CntrItem.h

class CXOfficeCntrItem : public ColeDocObjectItem

{

...

public:

CXOfficeCntrItem(CXOfficeDoc* pContainer,LPCTSTR);

bool m_isCreate;

bool CreateItem (LPCTSTR);

...

};

// CntrItem.cpp
CXOfficeCntrItem::CXOfficeCntrItem(CXOfficeDoc* pContainer,LPCTSTR templ)

: COleDocObjectItem(pContainer), m_isCreate(false)

{

CreateItem(templ);

}

bool CXOfficeCntrItem::CreateItem(LPCTSTR templ)

{

USES_CONVERSION;

// get storage for the object via virtual function call

m_dwItemNumber = GetNewItemNumber();

GetItemStorage();

// add AfxOleInit(); in CXOfficeApp::InitInstance
AfxOleGetMessageFilter()->EnableNotRespondingDialog(FALSE);

// attempt to create the object

LPOLECLIENTSITE lpClientSite = GetClientSite();

SCODE sc = ::OleCreateFromFile(CLSID_NULL,

 T2COLE(templ),

 IID_IUnknown,

 OLERENDER_DRAW,

 NULL,

 lpClientSite,

 m_lpStorage,

 (LPVOID*)&m_lpObject);

return m_isCreate = FinishCreate(sc) == TRUE;

}

7. And the last thing to do is to make changes in CXOfficeDoc and CXOfficeView classes for ActiveX document display

// XOfficeDoc.h

...

class CXOfficeCntrItem;

class CXOfficeDoc : public COleDocument,

...

{

...

public:

CXOfficeCntrItem *m_ctrl;

CString m_template;

CString m_str;

double m_double;

long m_long;

bool LoadTemplate();

...

};

// XOfficeDoc.cpp

CXOfficeDoc::CXOfficeDoc()

: m_ctrl(0)

{

EnableCompoundFile();

}

BOOL CXOfficeDoc::OnNewDocument()

{

if (!COleDocument::OnNewDocument())

return FALSE;

m_template = g_template;

m_str = g_str;

m_double = g_double;

m_long = g_long;

return LoadTemplate();

}

bool CXOfficeDoc::LoadTemplate()

{

char path [_MAX_PATH];

char drive[_MAX_DRIVE];

char dir [_MAX_DIR];

char fname[_MAX_FNAME];

char ext [_MAX_EXT];

::GetModuleFileName(NULL,path,sizeof(path));

_splitpath(path, drive,dir,0, 0);

_splitpath(g_template,0, 0, fname,ext);

_makepath (path, drive,dir,fname,ext);

{

CWaitCursor cw;

m_ctrl = new CXOfficeCntrItem(this,path);

}

if (m_ctrl == 0 || m_ctrl->m_isCreate == false) {

CString str = "Can not open the doc:\n";

 str += path;

AfxMessageBox(str,MB_ICONSTOP);

return false;

}

return true;

}

// XOfficeView.cpp

void CXOfficeView::OnInitialUpdate()

{

CView::OnInitialUpdate();

CWaitCursor wc;

m_pSelection = GetDocument()->m_ctrl;

...

}

So, now we are able to load ActiveX documents automatically. It is quite not bad already. Pay attention to the fact that the procedures of preservation and loading of our documents work normally too, saving thus the contents of the initial template document. The truth is that we don’t need it at all. The only thing that does not work is Print Preview. I was not able to understand it therefore, if someone manages to do it I shall be very obliged to find out about it first.

8. Now we shall teach CXOfficeDoc class to store and to load only our data and not to ask questions about any data change of ActiveX document itself. For this purpose we shall add methods of OnOpenDocument and SaveModified and bring in the following changes with the help of ClassWizard:

// XOfficeDoc.cpp

void CXOfficeDoc::Serialize(CArchive& ar)

{

if (ar.IsStoring()) {

ar << m_template << m_str << m_double << m_long;

} else {

ar >> m_template >> m_str >> m_double >> m_long;

}

//
COleDocument::Serialize(ar);
}

BOOL CXOfficeDoc::OnOpenDocument(LPCTSTR lpszPathName)

{

if (!COleDocument::OnOpenDocument(lpszPathName))

return FALSE;

return LoadTemplate();

}

BOOL CXOfficeDoc::SaveModified()

{

return CDocument::SaveModified();

}

// CntrItem.cpp

void CXOfficeCntrItem::OnChange(OLE_NOTIFICATION nCode, DWORD dwParam)

{

BOOL modified = m_pDocument->IsModified();

COleDocObjectItem::OnChange(nCode, dwParam);

m_pDocument->SetModifiedFlag(modified);

GetDocument()->UpdateAllViews(NULL);

}

9. The following step shall be the reception of the IDispatch interface of ActiveX document. Let’s bring in the following changes to CXOfficeCntrItem class:

// CntrItem.h

...

#include <comdef.h>

...

class CXOfficeCntrItem : public COleDocObjectItem

{

public:

...

int m_who; // 0 - ?, 1 - Word, 2 - Excel

IDispatchPtr m_disp;

LPDISPATCH GetIDispatch();

void AttachDisp ();

void ActivateDisp();

void CloseDisp ();

...

};

I did not want to present the text of the appropriate methods, as it would have taken too much space. They can be looked up in the source texts of the program. It shall be necessary also to bring in the alterations to CXOfficeDoc and CXOfficeView classes listed below.
// CXOfficeView.cpp

void CXOfficeView::OnInitialUpdate()

{

...

m_pSelection = GetDocument()->m_ctrl;

m_pSelection->AttachDisp();

//Active documents should always be activated

...

m_pSelection->ActivateDisp();

}

// CXOfficeDoc.cpp

void CXOfficeDoc::OnCloseDocument()

{

if (m_ctrl)

 m_ctrl->CloseDisp();

COleDocument::OnCloseDocument();

}

10. Now it’s high time to make our automation server intelligent. For this purpose we shall define ActiveDocument and IsActiveDocument properties for IApplication interface and also PStr, PDouble and PLong properties for IDocument interface.

Is easy to do with the help of ATL Wizard.

Workspace – Class View – IApplication – Right button – Add Property

Workspace – Class View – IDocument – Right button – Add Property

The realization of methods can be looked up in the source texts.

11. The files XOffice.doc and XOffice.xls are the examples of Word и Excel documents.

In Word the document initialization of field occurs in event Document_New, which is obviously called from the program. The value of fields is given to the named bookmarks. In Excel the document initialization of cells is made in event Workbook_Activate. It is not quite convenient, but I have tried a good deal of variants and has defined this one (Workbook_Activate) as the best and steady working. As I have already said, the direct call of macro from VBA leaves Excel in memory even when the program is finished.

Please direct email to me at the following address:

it@hotmail.ru
